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Abs tract

We discuss a fast algorithm f or the linear prograimning relaxation of

the Multiple Choice Knapsack Problem. Let N be the total number of variables

in this problem and let J and J denote the total number of multiple choice
max

variables and the cardinality of the largest mul’;iple choice set, respectively.

The running time of the algorithm is then bounded by O(J log J ) +  0(N).

Under certain conditions it is possible to reduce this bound to 0(N) steps on

the average. Poss.ble further improvements are also discussed .
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I. Introduction

Consider the following LP/Multiple-Choice Knapsack Problem (LMCK)

(LMCK) — Min imize Z C
j

X
jJEN

(1) subject to ~ a x a
0jEN~~~~

(2) E x~~= l , k E K
JEJk

(3) X
j~~~

O j E N

x < I  j E I ’~~~N\U ~kkEK

where the multiple choice sets, 3k’ k E K, are mutually disjoint. Let

= U 
~k’ I = N\J. We refer to the variables of J as multiple choice

kEK

• (or CUB) variables and to those of I’ as simple upper bounded ones.

(124CK) is a special case of the general (LP) problem with general-

ized CUB or VUB constraints which has been studied extensively (see, for

instance, a recent paper by Schrage (11]). Its main application is as

a relaxation for the integer multiple choice knapsack problem (9], [13],

wh ich is a useful model for various real life problems. In addition, as

pointed out by Witzgal, (14], an efficient algorithm for (LMCK) can be

used to accelerate the solution of ordinary LP/GUB problems by the dual

simplex algorithm. The reader may note that several generalizations of

(T2CK) fall within the scope of the model presented here. For instance,

arbitrary positive upper bounds in (4), as well as arbitrary coefficients

in the multiple choice constraints (2), can be handled by normalization.’

‘Negative coefficients in (2) can be handled by complementing the variablep in question relative to an artificially set large upper bound . The optimal
solution of (LMCK) must be checked in such cases for non-boundedness of
the original problem.
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Thus the two constraint linear programming problem can be viewed as a

special case of (LMCK) .

(LMCK) is equivalent , but not ident ical , to the problem treated

recent ly by Glover and Klingman [61, which in turn isaslight generaliza-

tion of the problems studied by Sinha and Zoltners (13], and Witzgal [14].

The difference between the model presented here and the one of (6] is in

the introduction of the individual upper bounds (4). (13] and [14] do not

allow for any variables which are outside of the multiple choice con-

straints. (th ing the notation introduced earlier, the model presented

in [6] corresponds to the case I’ — 0 while those of (13] and [14] to

I Upper bounded variables can be accommodated by the algorithms

of (6], (13] and [14] by treating each such variable, together with its

slack, as a multiple choice constraint. However, this convention tends

to increase both N and K and with them the computational effort. In

contrast, the algorithm proposed here works in the opposite direction ,

i.e. it converts multiple choice variables into simple upper bounded ones.

Thus , it takes full advantage of the existence of variables in I.

The algorithms of (61 , (13], and [14], as well as the one presented

here, are basically two-phase procedures. The role of Phase I is to

identify the lower convex boundary of each of the multiple-choice sets

(see Propositions 1 and 2 below). It is well known that this task can be

• accomplished in ~)(J log 3max~ 
steps , where 

~max 
denotes the cardinality

of the largest multiple choice set . ~~~~ :1
2The distinction between I and I’is of little consequence from a compu-
tational point of view, since, as pointed out by Clover and Klingnian [6 ],
all but at most 2 variables of i\i’ can be trivially eliminated at the
outset.
3Throughout this paper we let the same symbol s tand for a set and for its
cardinality .

4
Throughout this papr r we take log x to mean max (log ,c,l)

~
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Phase II of the above mentioned algorithms is an iterative improve-

ment procedure. As mentioned earlier , the algorithms of (61 , (13], and

[14) treat the variables of I as add itional mul t ip le  choice constraints.

Let K’ — K + I be their total number under this convention. The corn- .

plexity of Witzgal’ s Phase II is then O(K’(N-K) ) while Clover and Kling-

man ’s is 0(N log K’). Sinha and Zoltners do not give complexity estimates

but their procedure is of a similar type. Its precise performance may

equal one or the other of these botn~ds depending on some unspec ified de-

tails of implementation.

A particularly interesting special case of (LMCK) is the knapsack

problem (LKP) , wh ich corresponds to the case 3 = 0. An 0 (N) al gor ithm for

this problem is given in [l),[23,[8]. Although any of the algorithms of [6],

[13), and [14) can be specialized to solve (LK1’), the resulting procedure

is not an 0(N) algorithm for (LKP). This discrepancy brings to mind the

question , posed by Clover and Kl ingman , (61, as to the possibility of design-

ing an algorithm for (LNCK) which retains (or even exceeds) the efficiency achieved

by the algorithms [6], [13] or [14], while specializing to an 0(N) procedure

when the instance of (LMCK) corresponds to (LKP). In this paper we settle

this question in the affirmative. More specifically , our algorithms use

the calculations of Phase I in order to convert (LMCK) into (LKP). This

conversion is done without increasing any of the problem parameters (such

as the number of variables or the size of the coefficients) and takes a

negligible computational effort. Since (LKP) is known to be of comp lexity

0(N) , the over all comp lex ity of our algor ithm is

I
— 
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(5) P = 0(Jlog 
~sax ) + 0(N)

Expressed in terms of N alone , it is quite clear that there exist positive con-

stants, c
1
, C

2
, such that

c
1

N P <  c
2 

N log N

For instance , P ~ 0(N) if there exist c3 suc h that 3 < c3, or if for every

positive constant, c
4
, there exists N* such that c4

. N> 3 for N > N*.

We present the transformation of (LMCK) into a knapsack problem in section II.

In section III we discuss two possibilities for improvements on the bound (5).

The first one is the “Divide and Conquer” algorithm of Bentley and Shamos, [3J ,

which can be used to speed up the computation of phase I. Under certain condi-

tions this approach yields an algorithm for (LMCK) whose expected running time is

0(N). The second improvetnent,directed at phase II,is based on a generalization

of ideas due to Jefferson,Shamos and Tarjan , [12), Johnson and Mizogouchi, [8]

and Galil and Megiddo, [5]. It is particularly relevant for cases in which Phase I

can be avoided entirely. This may arise, for instance, if each of the sets

kEK, arises from piecewise linearization of a certain (one dimensional) convex

function. In such cases, it is sometimes possible to solve (LMCK) in sublinear

(worst case) effort.

II. The Transformation

Several properties of an optimal solution for (LMCK) are discussed in [5],

[13) and [14]. Propositions I - 3 below are straight forward generalizations

of these properties.

4
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Proposition 1 ( 6 1, [13], [14 ] Let i , j  E for some L E K

with a~ — a~

C > c
i=

then there exists an optimal solution to (thCK) with x~

Proposition 2 [6], [13], [14] Let t,j,k E for some .L E K

with

C
1

C j C k C
Iand - >

a
j

_ a
j a

k
a
j

then there exists an optimal solution for (U4CK) with X
j 
= 0.

It will be convenient to think on a given multiple choice set,

as a set of points, [(aj~
c
j
)) j E J~ , in a two dimensional space. Using

Proposition 2 we can eliminate from such a set all but those variables

which define its lower convex boundary. Let C 3k be the set of

remaining variables and let J ’ = U J,~, N
’ I U J ’. Proposition I

kEK
ensures that a

1 # a~ i,j E J~ , i ,~ 
j.

There are several available algorithms which can be used to identify

the sets J~ , k E K (e. g . ,  [7], [10].) The approach taken in [6], [13] and

[14] is based on first sorting the variables of each set 3
k 

accord ing to

increasing a~ values. The sorted sets are then scanned and variables

which violate Propositions I or 2 are purged . The computational complexity

of this procedure , as is the case for most other techniques which identify

the convex hulls of a set of points in a plane , is determined by the sort-

ing phase. Since sorting a set of size 3
k 

requires °~~k 
log 3k~ 

operations ,

the overall complexity of phase I is given by

0(Z 3
k 

log 
~~ 

~ 0(j log ~nax~k— 1

/
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Denote by (U4CK)’ the (equivalent) problem obtained from (LMCK) by

replacing the sets with 4, k E K and N with N’. We assume that the

multiple choice sets are indexed such that

— hjk~
ik+1~~~~~Jk 

+ J~ -l 
=

and

a < a  < ... < a ~
~k ~k~

1

W.L.O.G. we can assume J’k > 2, k E K. By convexity ,

• 

(c~~ 1 
- cj ) / ( a 34.1 

- a
j) 

< 

~°j+2 
- c
j+1

)/ (aj+2 
- a
j~ 1

) for 
~~~~~~~~~~~~~~ ‘

~~~~~~ 

k E K

Proposition 3 [6], [13], [14]

Any basic optimal solution for (LMCK)’, ~~, satisfies

(6) x has at most two fractional variables.

(7) if x has two fractional variables they must be adjacent

variables within one of the multiple choice constraints.

(8) if ~ has a unique fractional variable it must be a non-

multiple choice variable.

We now define a knapsack problem, (LKP) , which is equivalent to (LMCK)’
For each multiple choice set, J~, let

— 

~~~~~k
3 and let J” = U J~, N” — I U 3” . Define

kEK

Ic - c 1 L f j E J ”
(9) d ‘~~~ ~

i IC  i f j E l

faj
_ a

j i  
i f j E J ”

(10) e
-~ 1a~ i f j E l

and consider the following knapsack problem:

(LKP) W* minimize L d y + E c
kEK ~k

(11) subject to ~ e y + E a a
0j E N”~~~~ kEK ~k

~~~~~~~~~~~ ~~~~~~~ 
—

~~
. 

~
- 
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(12) Yj~~~O J E N

(13) Yj ~ 1 f E I’ U f

In words , we have eliminated the first variable , xj , from each of
k

the multiple choice constraints by setting this variable to 1. The objec-

tive and constraint rows have been re-adjusted to record this elimination.

The remaining multiple choice variables are then replaced by “difference

variables”, Yj = Xj - Xj .~~~~i whose role is to enable one to shift from

to other variables of 4 as possible representatives of this set. it is

quite apparent that the variables Yj 
will function properly only under

certain conditions. Indeed , there is no obvious correspondence between the

feasible solution set of (TIP) and that of (LMCK)’. However,

Theorem 1

(TIP) is equivalent to (LMCIQ’ in the following sense:

(i) w* — Z*

(ii) Let y be a basic optimal solution for (LKP) and let

f denote the index of its basic variable , 0 < y
f 
< 1.

Then a basic optimal solution for (U(CK)’, x, can be

def ined as follows :

(14) Xj = Y j j E i

(15) Let 
~
‘
k 

be such that f ~ 4
Define

f ~k if — 0 Yj E 4
hk -1

max(j~j E 4, Yj 13 otherwise

then

1~ 1 ~~~~~~~~~ 4 — k
I ~ k’~~ k

X
i ii

0 J E J
~
, j 3 1 h

k

I

_ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~ ~~~~~~~~~
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(16) Let J~ be the unique set such that f E J (if indeed

such a set exists). Set

Yf 
j = f

X
j 

l-Y f 1= 1- 1

0 J E J ’,j ~~f, f-l

Proof. Call a basic feasible solution to ( LMCK)’ , x, acceptable if it satis-

fied (6), (7) and (8). Call a basic feasible solution to (LKP), y, acceptable

if it satisfies the following condition :

(17) y
1
> 0 , J E 4 = ~.y~~= l  YiE4, i < J

The theorem follows from the following three facts:

(i) The transformation defined by (14), (15) and (16) is

a one to one mapping from acceptable solutions of

(U(CK)’ onto those of (LKP).

(ii) For any acceptable solution for (LMCK5, the transformation of

(i) preserves the obj ective function value .

(iii) Th~e optimal basic solutions to both (LKP ) and (LMCK) ’ are

acceptable for the corresponding problems. Q.E.D.

III. Improvements

Let us reconsider the bound (5). As we have already noted , the overall

complexity of the algorithm presented in the previous section may get as high

as 0(N log N). The bulk of this effort is spent on the execution of phase I,

i.e., on the identification of the sets J~ , k E K. It is well known (e.g., [3])

that a lower bound on the ef for t  involved with this task is given by

LJL.. -- ~~~~~~~~~~~ .• - - - - ~~~~~~~~ ~~~~~~~~~~ -• ~~~~~.• - 
. •~~~~~
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k
E U (J

k 
log 

~~ 
Thus , any algorithm which is based on phase I (or its

i—i
equivalent) will require at least O(N log N) steps under adverse conditions .

The question of whether (LMCK) can be solved without explicitly identifying

the sets J~, kEK, is open.

The foregoing discussion relates to worst case analysis only. Under

certain condition ; one may do better on the average. For instance, Bentley

and Shamos , [3J, have developed a “Divide and Conquer ” algorithm which is

particularly efficient if J~ << J~ , k E K. More precisely, let Lk E 3k be

a random subset of and let L~ stand in the same relation to Lk 
as

does to 
~~ 

Since L
k 

is a random set so is L~. Denote by E(L~) the expected

size of this set. If there exists a constant p < 1 such that

(18) E(L~) < L~, k E K

Then Bentley and Shamos’ algorithm finds J~ in expected time which is

bounded by 0
~
3
k~

• This implies, of course , that phase I, and hence the al-

gorithm as a whole , can be solved in (expected) 0(N) steps. (It  is noted in

[3), that a “Divide and Conquer” approach can yield an algorithm for the two

variable linear programming problem whose expected and worst case running

time are bounded by 0(N) and 0(N log N) respectively . As noted earlier , the

dual of this problem, i.e., the two constraint linear programming problem is

a special case of (LMCK).)

Condition (18) is known to hold under quite a variety of situations .

For instance , it suffices to assume that the data ~~~~~~~~ j E 3k 
are inde-

pendent and identically distributed and that for any given variable the cost

and weight coeffic ients are independent of each other. For details and

references see [3].

A final remark concerns the case where each of the sets 
~k ’ k E K,

/
~~~~~ j~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ Li~~~~’ - 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~•
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arises from a process of piecewise linearizatiun of a certain (one dimen-

sional) function. Such a process often yields the coefficients (a
3
) J E

already sorted in a natural way. This reduces the computational complexity of

phase I to 0(J), and of (LMCK) to 0(N).

If the nonlinear functions referred to in the previous paragraph are

known to be convex, one can sometimes do even better. We note that in such

cases 4 = Jk,k E K, and one can start the computation directly at phase II
(as in [4], pp.  484-486) . The knapsack problem that results in such a case

has a special structure that can be exploited by generalizing some ideas

brought forward by Jefferson, Shamos and Tarjan , [12), Johnson and Mizoguchi,

[8) and Galil and Megiddo [5]. The resulting algorithm is of complexity

0(K log2(J/K) ) + 0(1 log (N/I))

which may be less than linear in N. This would mean that such problems

can be solved in less time than is needed to read in the totality of the

data f(c~~a.YJ 1 i E N. Such Sublineat bet~avior is possible, for instance,

in an on-line environment where the convex functions which are subject to the

process of piecewise linearization are only evaluated when needed.

The algorithm of [1], [2], [8], for (LKP) is based on an iterative step

in which the median element of the set [d~/e.1~ I E N, is used to reduce the

size of N by a factor of at least 1/2. The lion ’s share of the computational

effort is spent on the operation of identifying the median. The procedure

below uses a certain approximation for the median whIch is cheaper to calcu-

late but which still guarantees that a significant portion of N (at least

1/4) will be disposed of at each iteration. For a statement of the algorithm

it is convenient to rename the set I as J~ . At each iteration , for k = 0,... ,K let

_____  ~~~~ - ~~~~~~~~~~~~~~ ~ ~~~;• • ~~~~~~~ •..
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4 = (3 E was already set to 1)

4 = [3 E was already set to 0)

= (3 E is as yet unassigned)

and for # = +, - , or * let

K 
~N = U

k=0

For a given scalar X consider the following partition of- J~, k =

1 *
= 
~ 

E 3
k 

d
3
/e

3 
> X)

J~(X) = (j E-J~~J d
3
/e. = X )

J~(X) 
= Ii E J~I d3/e

3 
< X)

For i = 1,2,3 let

i K
N (X) = U Jk(X)k=0

and

= E
JEN (X)

Algor ithm KNAPSACK

0. Set J~~
a. Jj~~~ 0 ~~~~~~~ k 0 ,...,K.

1. Choose X as follows:

(a) Let rk be the median index of each set Rk = [dj/ejI, 3 E
k =0...,K.

(b) Let r be the weighted median index of the set

R — fd /e ) k = 0,... ,K, where the weight associated
rk k

*with the kth element is the card inality of the set J

(c) LetX d/e .r r

I
- 

• --. . . - ,. .
-
~~~~~~~~~-. . - •~~~

- - 
~~~~~~~~~~~~~ 

-
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2. Calculate S~(X) and S
2
(X).

(a) If S1(~ ) < a’~ < S1(X) + S
2(X) stop, X is optimal. An opti-

mal solution , y, can be found by setting = 1, j € N+ U N1(X) ,.

= 0, 3 € N U N
3
(X), and then “filling the knapsack” with

variables y
3
, j E N

2(X) (any, possib ly includ ing one at a

fractinnal value).

(b) I f S 1(X)> a~ set J = J U J ~~U J ~, J J ~, k = 0 ,...,K.

(c) If S
1
(X) + S

2(X) 
< a~ set J~ = J~ U J~ U J~, J~ 

=

k = 0,.. .,K, a~ = a~ - (S1(X) + S2(X)).

3. If N* > I+K Go to 1.

Otherwise

4. Solve the remaining knapsack problem using the linear time algorithm

of [ 1 ], [2], [8].

To assess the computational complexity of algorithm }~ APSACK we note

that each iteration reduces the size of N* by a factor of at laast 1/4.

The number of iterations through Steps 1, 2 and 3 is then bounded by

0(log(N/(K+I))). -

The effort involved in each iteration is as follows:

(i) For each of the sets J~ , k — 1,... ,K, one can find rk,

calculate the contribution of J~ to S~ (X), S
2
(X), and

for’s the sets J~, i — 1,2 ,3 in an e f for t  bounded by

0(log J~) < O(log 3k~~

(ii) The same tasks can be accomplished for J
0 

in 0(J~ ) < 0(I)

steps.

(iii) The weighted median r can be identified in 0(K) steps.

In addition one may spend 0(k + I) operations going through step 4.

Thus, the over all complexity of algorithm KNAPSACK is bounded by

0[log(N/(K+I))(K log(J/K) + I)] < 0 (K log
2
(J/K)) + 0 (I log (N/I)). 
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p We discuss a fast algorithm for the linear programsing relaxation of the
Multiple Choice Knapsack Problem. Let N béTh~e total number of variables
in this problem and let 3 and J .  denotq the total number of multiple choice

- - 
- variables and the cardinality of the largest multiple choice set,

I respectively. The running time of the algorithm is then bounded by
d(J log + 0(N). Under certain conditions it Li possible to reduce

! this bound to 0(N) steps on the average;— Peea4-b-le further—improvements are aislo
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